SANDIA REPORT

SAND2009-0179
Unlimited Release
Printed January 2009

Performance of an MPl-only
Semiconductor Device Simulator on a
Quad Socket/Quad Core InfiniBand
Platform

Paul T. Lin, John N. Shadid

Prepared by
Sandia National Laboratories
Albugquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2009-0179
Unlimited Release
Printed January 2009

Performance of an MPI-only Semiconductor
Device Simulator on a Quad Socket /Quad
Core InfiniBand Platform

Paul T. Lin, John N. Shadid
Electrical and Microsystem Modeling Department
Sandia National Laboratories
P.O. Box 5800
Mail Stop 0316
Albuquerque, NM 87185-0316
email contact: ptlin@sandia.gov

Abstract

This preliminary study considers the scaling and performance of a finite element
(FE) semiconductor device simulator on a capacity cluster with 272 compute nodes
based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node
communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is
comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA)
nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The per-
formance results for this study are obtained with a FE semiconductor device simulation
code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain de-
composition and multilevel preconditioners. Scaling and multicore performance results
are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A
parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capabil-
ity platform. The results indicate that an MPI-only programming model for utilizing
the multicore nodes is reasonably efficient on all 16 cores per compute node. How-
ever, the results also indicated that the multilevel preconditioner, which is critical for
large-scale capability type simulations, scales better on the Red Storm machine than
the TLCC machine.

Acknowledgment

The first author is very grateful to Jeffrey Ogden for numerous helpful discussions concerning
the TLCC machine. He is grateful to Sophia Corwell for her help and thanks Marcus
Epperson, Jesse Livesay and the rest of the TLCC team. He thanks Suzanne Kelly, Robert
Ballance, Michael Davis and the rest of the Red Storm team for their help. He also thanks
Brian Barrett, Tommy Minyard, Gary Hennigan, and Michael Heroux for helpful discussion.
The authors are very grateful for the generous support from the DOE NNSA ASC program,
DOE Office of Science, and DOE ASCR TAA.

Contents

T Introduction 9
2 A Brief Description of the FE Semiconductor Model 11
3 Scaling Results.o 13
3.1 Weak scaling study up to 112 million unknowns 14
3.2 Weak scaling study up to 28 million unknowns 16
3.3 Fixed problem size scaling study (28 million unknowns) 19
4 Multicore Results 23
4.1 Memory and placement of MPI tasks on cores.......................... 23
4.2 Scaling for a single compute node 25
4.3 Effects of network and compute nodes on scaling 27
5 CONCIUSIONS . . o oottt 29
References 30

Figures

1

N O O = W o

(a) Signed logarithm of doping for 2x 1.5um 2D NPN BJT; (b) Corresponding
steady-state electric potential for 2 x 1.5um 2D NPN BJT at 0.3V bias

Weak scaling study up to 112 million unknowns
Weak scaling study up to 112 million unknowns: ratio of times TLCC/RS . . .
Weak scaling study up to 28 million unknowns
Weak scaling study up to 28 million unknowns: ratio of times TLCC/RS
Fixed problem size scaling study with 28 million unknowns
Fixed problem size scaling study with 28 million unknowns: ratio of times

TLCC/RS © oo oo e e e e

Tables

1

10
11

Weak scaling study up to 112 million unknowns comparing one-level precon-
ditioner for TLCC (MVAPICH) and Red Storm.........................
Weak scaling study up to 112 million unknowns comparing three-level pre-
conditioner for TLCC (MVAPICH) and Red Storm.
Weak scaling study up to 28 million unknowns comparing one-level precondi-
tioner for TLCC (MVAPICH) and Red Storm.
Weak scaling study up to 28 million unknowns comparing three-level precon-
ditioner for TLCC (MVAPICH) and Red Storm.............
Fixed problem size scaling study with 28 million unknowns comparing one-
level preconditioner for TLCC (MVAPICH) and Red Storm.
Fixed problem size scaling study with 28 million unknowns comparing three-
level preconditioner for TLCC (MVAPICH) and Red Storm.
Effect on performance due to local vs. nonlocal memory access on a node. . . .
Strong scaling on single node: one-level ILU (“speedup” is abbreviated as
LT)
Strong scaling on single node: multigrid preconditioner; “speedup” is abbre-
viated as ST L
Weak scaling on single node: 110K DOF/core one-level ILU
Multicore network/node study starting with 256 compute nodes.

15

17

20

20
24

25

1 Introduction

A current pathway to increase the peak performance of the next generation supercomputers
is to utilize large numbers of powerful compute nodes comprised of multiple sockets with
multiple cores on each socket. It has been forecasted that by about 2020 compute nodes will
have a thousand cores [25]. This is a significant cause of concern for numerical methods and
scientific application software developers who have typically had the performance of their
codes limited by the bandwidth from the compute processor to local memory. Although
there appears to be a belief that the single-level MPI-only programming model should be
sufficient for the next 3-5 years, there appears to be no general consensus on the most effec-
tive programming model for larger core count multicore nodes [9]. This preliminary study
considers the performance of an existing semiconductor device simulation code (Charon) to
begin to elucidate a number of important issues in utilizing multicore architecture nodes.

An example of the trend to multicore nodes is the recent arrival of the Tri-Laboratory
Linux Capacity Clusters (TLCC) at Sandia National Labs (SNL). Sandia, Los Alamos,
and Lawrence Livermore national laboratories have collaborated to purchase the same high
performance capacity linux clusters, the TLCC [2]. Sandia is receiving three machines: two
for New Mexico and one for California.

Very briefly the SNL TLCC machine has the following characteristics®:

38 TFlops peak

272 compute nodes (total of 4352 cores)

— quad socket 2.2 GHz AMD Opteron (Barcelona) quad core processors
— Memory: 32 GB DDR2 RAM per node

Interconnect

— Interconnect: InfiniBand with OFED software stack
— InfiniBand card: Mellanox ConnectX HCA

Software environment

— RedHat Enterprise Linux on compute nodes

— Open MPI and MVAPICH with Intel, PGI, GNU, and Pathscale compilers

Although the TLCC machines are intended to be capacity machines, it is important to
understand how well applications codes will scale on a multinode machine with a commodity
interconnect such as InfiniBand. As a point of comparison this study will consider the relative
performance of the TLCC machine with the Cray XT3/4. The Cray XT3/4 (Red Storm)

!Summary from the TLCC web site (https://computing.sandia.gov/platforms/tlcc)

has a custom designed interconnect that maximizes performance and scalability and employs
both dual and quad core nodes.

The limited scope of this study is to examine the performance of a state of the art C++
object oriented transport reaction code, Charon, on the TLCC machine. The Charon code
was originally developed to model semiconductor devices via the drift-diffusion equations,
but it can also model magnetohydrodynamics (MHD). This study considers the performance
of Charon for solving a steady-state drift-diffusion problem, and is not intended to be ex-
haustive. The authors make no claims about how other physics codes will perform. Charon
simulations will be run on TLCC to examine two issues: how does the scalability of a com-
modity interconnect compare with the custom high performance interconnect on Red Storm
and how efficiently can the 16 cores on the compute node be utilized. These studies were
performed on the first SNL TLCC machine, named “Unity.”

In this study, two different implementations of MPI are used on the TLCC Unity machine.
The first is Open MPI 1.2.7 with the Intel 10.1 compiler. The second implementation
is MVAPICH 1.0.1 with the Intel 10.1 compiler. Two different implementations of MPI
were evaluated because in an initial study the Open MPI scaling of Charon was found
to be extremely poor on 4096 cores of TLCC compared with 4096 cores of Red Storm.
Based on the results of Minyard’s[15] experience with the Texas Advanced Computing Center
(TACC) Ranger machine the decision to include an alternate MPI implementation other
than Open MPI was made. The TACC team found that an alternate MPI implementation,
MVAPICH (developed at Ohio State University), was scaling considerably better than Open
MPI. Although the TACC Ranger team’s Open MPI scaling issue was in startup time, and
our Open MPI scaling issue is occurring during run-time and therefore is most likely a
different issue, the fact that MVAPICH was scaling better for the TACC team led us to try
MVAPICH for Charon. In our studies we found that Charon implemented with MVAPICH
scaled considerably better with Open MPI, as the results that follow demonstrate.

10

2 A Brief Description of the FE Semiconductor
Model

The Charon semiconductor device modeling code solves the drift-diffusion equations [13, 26]:

V-(E)—q(p—-n+C)=0, (1)
on
. — 2
en V-J,+qG =0, (2)
0
4o+ V-3, +qG =0, (3)
ot
where
E=-Vy,

Jn = annE + anVn,
J, = qpp, E — ¢D,Vp.

The unknowns are: 1, the electrostatic potential, n, the electron concentration (number of
electrons per volume), and p, the hole concentration (number of holes per volume). The
parameters for the model include, €, the permittivity of the semiconductor material, ¢, the
fundamental electron charge, ji,, and p,, the electron and hole mobilities, respectively, and D,
and D, the electron and hole diffusion coefficients, respectively. The electrostatic potential
source term C' is the doping profile, and G is the generation/recombination source term in
the electron and hole balance equations. For the test case considered in this paper, the
generation /recombination source term is negligible.

These equations are discretized using a stabilized finite element formulation [20]. This
discretization is associated with a simple extension of an SUPG-type approach to the drift-
diffusion system. The methodology is based on a variation of the streamline upwind Petrov-
Galerkin (SUPG) type FE formulations of Hughes et. al. [10, 11] and Shakib [24].

Discretization of the drift-diffusion equations produces a large sparse, strongly coupled
nonlinear system. This system is solved via a Newton-Krylov algorithm [1, 21], where the
linear systems (generated at each Newton step) are solved using a Krylov accelerator [16, 5].
The choice of the preconditioner is critical to the performance of the linear solver. The two
main preconditioners considered in this study are a one-level domain decomposition (DD),
with a subdomain solver based on an incomplete lower/upper (ILU) factorization, and an
algebraic multilevel type preconditioner. The multigrid preconditioner is a Petrov-Galerkin
smoothed aggregation approach for nonsymmetric linear systems [19]. More information
on these details of these methods and representative results for large-scale performance of
various finite element applications can be found in [23, 22, 18, 14].

Briefly, in terms of software, the initial load-balance and fine-level nonoverlapping sub-
domains are obtained using Chaco [6]. The Trilinos package, IFPACK, provides incomplete
factorizations [17]. Krylov methods are implemented in AztecOO [27, 7]. A sparse KLU

11

factorization is used for the coarse direct solver [3]. The multigrid cycles and grid trans-
fers are provided by ML [4]. ML also provides aggregation routines though METIS and
ParMETIS [12] that are used in this paper. Access to this software is obtained via the
Trilinos framework [8].

12

3 Scaling Results

The numerical studies involve the steady-state solution of the two-dimensional drift-diffusion
equations for a 2 x 1.5um silicon NPN bipolar junction transistor (BJT) (Figure 1). Briefly,

(a) BJT doping (b) BJT electric potential

Figure 1. (a) Signed logarithm of doping for 2 x 1.5um 2D
NPN BJT; (b) Corresponding steady-state electric potential
for 2 x 1.5um 2D NPN BJT at 0.3V bias

“NPN” denotes a transistor with n-type (material with additional negative charge carriers),
p-type (material with excess holes), and n-type material. This geometry has three contacts.
The base at the top left corner, the emitter at the top right corner, and the collector along
the entire bottom. Both the emitter and base are 0.1um wide. The steady-state calculation
is performed with a voltage bias of 0.3V: the base and collector are held at ground and the
emitter is assigned a voltage of -0.3V. The initial guess for the drift-diffusion equations is
taken as the solution to the nonlinear poisson (NLP) problem [20]. Figure la shows the
signed logarithm of the doping for the device. The signed logarithm slog(x) is defined as
slog(x) = sign(x)logio(1 + |x|). Note that the doping, C, varies between 10! and —10'
(N-doping is positive). Figure 1b shows the corresponding steady-state electric potential
solution.

In this section, TLCC results will be compared with Red Storm results. The TLCC
results in this section use all 16 cores per compute node. The Red Storm results in this
section use the older 2.4 GHz dual core nodes (both cores per compute node). Charon was
built on Red Storm using the PGI 6.2.5 build environment.

It is of interested to compare the performance of a one-level preconditioner and a multigrid
preconditioner on the two platforms (TLCC and Red Storm) as the communication pattern
is significantly different. The one-level DD ILU preconditioner involves subdomain boundary
data exchange with its nearest neighbors. The multigrid preconditioner uses this same DD
ILU preconditioner as smoothers on the fine and medium mesh and KLU direct solver on the
coarse mesh. So not only does the multigrid preconditioner require boundary data exchange

13

proc | fine 1-level DD ILU(2) overlap=1

grid TLCC (MVAPICH) Red Storm

unk | iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)

Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
16 | 438K 142 | 0.88 13.9 | 2.88 | 18.0 142 1 0.94 | 844 | 7.00 | 17.9
64 | 1.75M 2871091 | 442|293 | 484 287 1096 | 249|700 | 34.3

256 | 6.98M | 571 | 0.95 157 1296 | 161 | 571]0.99 | 84.1|7.14| 93.9
1024 | 27.9M | 1145 | 1.00 640 | 3.01 644 | 1145 | 1.02 317 | 7.57 327
4096 | 112M | 2267 | 1.05 | 2441 | 3.13 | 2447 | 2264 | 1.05 | 1192 | 7.86 | 1202

Table 1. Weak scaling study up to 112 million unknowns
comparing one-level preconditioner for TLCC (MVAPICH)
and Red Storm.

with its nearest neighbors for ILU on the fine and medium mesh, it also requires more
complex communication for the grid transfer operators and the coarse mesh solve. Below
the weak scaling for two different problem sizes per core (27,000 and 6800) illustrate the
relative performance of the two machines.

3.1 Weak scaling study up to 112 million unknowns

A weak scaling study was performed on TLCC for both a one-level DD ILU preconditioner
and a three-level multigrid preconditioner, using both the Open MPI and MVAPICH built
executables. The problem was scaled up to 112 million unknowns on 4096 cores (27,000
unknowns per core). The results for the one-level preconditioner on TLCC with Charon
built with MVAPICH are presented in Table 1 and compared with the same scaling study
performed on Red Storm. Under “Time/Newton step”, “prec” denotes the time per Newton
step to construct the preconditioner, “linear” denotes the time to perform the linear solve
(this includes the time to construct the preconditioner), “Jac” denotes the time to construct
the Jacobian, and “Newt” denotes the total time to perform everything in a Newton step
(includes linear solve and time to construct the Jacobian). For the 4096 core case, 256
compute nodes on TLCC are used while 2048 compute nodes on Red Storm are used. Note
that entry for the 4096-core TLCC MVAPICH one-level preconditioner case is an estimate
because the calculation crashed during the sixth Newton step (calculation would have taken
seven Newton steps) when one of the compute nodes failed. However, a 4096-core TLCC
Open MPI calculation was completed earlier, and careful comparison between the MVAPICH
and Open MPI calculation showed that the former was 16% faster, so the estimate in the
table is an accurate estimate. The results for the three-level preconditioner are presented in
Table 2, where the TLCC results are for Charon with MVAPICH. The three-level Petrov-
Galerkin multigrid preconditioner uses a W(1,1) cycle with coarser levels generated using
METIS/ParMETIS and 125 nodes per aggregate.

14

proc | fine 3-level PG-SA W(1,1) aggl25

grid TLCC (MVAPICH) Red Storm

unk | iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)

Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
16 | 438K 48 | 1.50 | 6.22 | 2.89 | 10.2 49 1194 | 5.16 | 6.86 | 14.6
64 | 1.75M 70| 1.68 | 9.38 294 | 134 721210 | 7.401]6.86| 19.1

256 | 6.98M 951216 | 1491295 | 19.0 97 1254 | 11.3]7.00| 21.0
1024 | 27.9M 1251 3.38 | 29.0 | 3.02 | 33.2 1251289 | 168 | 7.71 | 27.3
4096 | 112M 152 1 104 | 745|315 | 78.9 153 | 447 | 25.7|7.00| 354

Table 2. Weak scaling study up to 112 million unknowns
comparing three-level preconditioner for TLCC (MVAPICH)
and Red Storm.

The comparison between TLCC and Red Storm for the one-level and three-level precon-
ditioners are plotted in Figure 2(a) and 2(b) respectively. The time plotted on the vertical
axes is the CPU time per Newton step in seconds. Although the results for TLCC for Charon
built with Open MPI were not presented in the tables, they are included in the plots. From
the tables and figures a few issues should be pointed out to interpret the results. First the
one-level DD ILU preconditioner, in general, scales very poorly. This is apparent from the
iteration count that increases significantly with problem size (and core count) in Table 1.
This accounts for the significant increase in CPU time in Figure 2(a) and is in contrast to
the three-level method in Figure 2(b) (note the change in CPU time magnitudes). This
scaling illustrates why some type of multilevel technique is required to approach truly scal-
able simulation methods and therefore modern large-scale computing platforms need to run
these methods efficiently. In Figure 2 the increase in CPU times for the simulation have
contributions from the increase in the number of iterations (an algorithmic issue) and in
the inefficiency of the platform scaling (most likely due to network scaling). To attempt to
more clearly show the effect of the scaling efficiency of the network, a plot of the ratio of the
TLCC time (Charon with MVAPICH) over the Red Storm time is presented in Figure 3 for
the two different preconditioners. For the 1024 core case, as an example, for the one-level
preconditioner this ratio is approximately 2, which means that the TLCC calculation took
twice as long as the Red Storm calculation. The horizontal dashed green and black lines are
included to denote the case where the TLCC and Red Storm are scaling in a similar fashion
for the one-level and three-level preconditioners. The fact that the ratio of TLCC over Red
Storm time is growing, as the problem size (and core count), is scaled indicates that the
TLCC network does not scale as well as the interconnect on Red Storm. Further the TLCC
performance on the multilevel algorithm deteriorates at a faster rate due to the increased
communication required for the coarser levels and transfers between levels.

In terms of the choice of MPI implementation on TLCC, Open MPI or MVAPICH,
for the one-level preconditioner it does not matter until more than 1000 cores are used.

15

Weak Scaling Study: 1-level DD ILU Scaled to 112 Million DOF Weak Scaling Study: 3-level PG-SA ML Scaled to 112 Million DOF
Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
— T — T

3000 - T L y— 7 100 I ———— — ‘
[| —&—— TLCC Open MPI1.2.7 OFED 1.2 | 4096¢c 1 | | —A—— TLCC Open MPI1.2.7 OFED 1.2
| | ——— TLCC MVAPICH 1.0.1 OFED 1.2] | | ——— TLCC MVAPICH 1.0.1 OFED 1.2 ‘
2500 |-| —@— Red Storm I | B— [| —@—— Red Storm a0d6c |
[Bo————— P = —

B I
| |TLCC 2.2 GHz Quad Socket/Quad Core
| |Red Storm 2.4 GHz Dual Core

T

00— — — — — — — — — —
 [ILU(2) overlap=1

1500 ———— — - ————— —

I- | TLCC 2.2 GHz Quad Socket/Quad Core
| |Red Storm 2.4 GHz Dual Core
T

:
[[ML 3-level PG-SA W(1,1) agg125]
60—=———— i T

- 40 77777777777 —
1000 —————————— + ——A—]

CPU Time per Newton Step (sec)
CPU Time per Newton Step (sec)

0—————1 —F————— —
| 16¢c i

[
\
\
10° 10° 107 10° 10° 10° 107 10°

Unknowns Unknowns
(a) 1-level DD ILU (b) 3-level W(1,1) aggl25

Figure 2. Weak scaling study up to 112 million unknowns

At 4096 cores, Charon with MVAPICH is 16% faster than Open MPI. For the three-level
preconditioner, for more than 256 cores MVAPICH is scaling better than Open MPI, and
Charon with Open MPI is 50% slower than with MVAPICH for 1024 cores. Not only does
Open MPI scale worse, it appears to have a possible robustness issue as the 4096 core case
with the three-level preconditioner failed due to an InfiniBand stack resource issue while
MVAPICH did not seem to have any problems.

Finally, one can observe that the two curves in Figure 2(b) cross. This is because the
time to construct the Jacobian and preconditioner is considerably higher for Red Storm than
on the TLCC machine. For smaller problems, the time to construct the preconditioner is
greater than the linear solve time on Red Storm. At larger problem sizes (core counts) the
time to solve the linear system dominates and the effectiveness of the scaling of the network
as described above becomes more critical to the overall solution time.

3.2 Weak scaling study up to 28 million unknowns

The previous weak scaling study does not give the complete picture how Open MPI and
MVAPICH on TLCC compare at 4096 cores for the multigrid preconditioner. A second weak
scaling study was performed, but with a quarter the number of unknowns as the previous
problem. As with the previous study, this study was performed on TLCC for both a one-
level DD ILU preconditioner and a three-level multigrid preconditioner for Charon built with
both Open MPI and MVAPICH. The problem was scaled up to 28 million unknowns on 4096
cores (6800 unknowns per core). The results for the one-level and three-level preconditioner

16

proc | fine 1-level DD ILU(2) overlap=1
grid TLCC (MVAPICH) Red Storm
unk | iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)
Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
16 | 110K 76 | 0.23 1.43 1 0.72 | 2.46 76 | 0.26 1.04 | 1.86 | 3.71
64 | 438K 15710241 4.191(0.74 | 5.24 157 | 0.27 2.68 | 143 | 5.43
256 | 1.75M 310 | 0.26 13.2 10.75 | 14.3 3101 0.28 | 7.69 | 1.71 | 10.3
1024 | 6.98M 614 | 0.29 47.8 1 0.76 | 48.9 614 | 0.30 259|179 | 284
4096 | 27.9M | 1244 | 0.36 193 | 0.77 195 | 1244 | 0.32 | 97.6 | 1.57 100
Table 3. Weak scaling study up to 28 million unknowns
comparing one-level preconditioner for TLCC (MVAPICH)
and Red Storm.
proc | fine 3-level PG-SA W(1,1) aggl25
grid TLCC (MVAPICH) Red Storm
unk | iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)
Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
16 | 110K 33 | 0.40 1.19 | 0.72 | 2.20 33 | 0.83 145 | 1.71 | 4.14
64 | 438K 55 | 0.45 1.97 1 0.74 | 3.00 55 1 0.89 | 212 | 1.71| 4.86
256 | 1.75M 80 | 0.66 | 3.77|0.76 | 4.83 80 | 1.08 | 3.57 | 1.71 | 6.14
1024 | 6.98M 114 | 1.84 | 12.0|0.76 | 13.0 115 191 | 9.77 | 1.79 | 12.2
4096 | 27.9M 153 | 597 | 50.2|0.79 | 514 151 | 3.35 19.2 1 1.86 | 21.9

Table 4. Weak scaling study up to 28 million unknowns
comparing three-level preconditioner for TLCC (MVAPICH)
and Red Storm.

17

Weak Scaling Study: Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
TLCC 2.2 GHz Quad Socket/Quad Core; Red Storm 2.4 GHz Dual Core
37— T
& [|—=— 1-levelDDILU ‘
o || |—e— 3-level PG-SAW(1,1) agg125 i
c25p—"7——"7—5 ¥ ——— —— T — — —
g]
2 []
Il e e T
@ 3]
2 r \
£ \
SR . T
T I \
s [\
R - +—
@ B similar scaling
o \
g |l e 4 - - — - —
= B similar scalin E
Sosf————— | I | Stmfarscaiing |]
o [\ \ \
-
= | | |
oL i L L
10° 0° 107 10°
Unknowns

Figure 3. Weak scaling study up to 112 million unknowns:
ratio of times TLCC/RS

are presented in Table 3 and Table 4 respectively (for TLCC, only the results for Charon
with MVAPICH are presented). All runs took seven Newton steps. The three-level Petrov-
Galerkin multigrid preconditioner uses a W(1,1) cycle with coarser levels generated using
METIS/ParMETIS and 125 nodes per aggregate.

The comparison between TLCC and Red Storm for the one-level and three-level precon-
ditioners are plotted in Figure 4(a) and 4(b) respectively. The TLCC results for Charon
built with Open MPI are also plotted. The time plotted on the vertical axes is the CPU
time per Newton step in seconds. One can observe from Figure 4(b) that compared with
Red Storm, the multigrid preconditioner on TLCC (MVAPICH) scales well up to 1024 cores,
but not so well for the 4096 core case.

For the three-level preconditioner, for the 4096-core case, Open MPI takes a factor of
2.6 as much time as MVAPICH, and a factor of 6 as much time as Red Storm. It is rather
disconcerting that Open MPI is slower than MVAPICH by such a large margin, because
typically when application developers test the scalability of their codes, they assume that
lack of scalability is due to their code rather than possible lack of scalability of the MPI
implementation.

Figure 5 presents the ratio of the TLCC time (Charon with MVAPICH) over the Red
Storm time. The horizontal dashed green and black lines would denote the case where TLCC
and Red Storm were scaling in a similar manner for the one-level and three-level precondi-
tioners respectively. The run time difference for the three-level preconditioner calculation
on 4096 cores on TLCC than Red Storm was a factor of 2.4. Multigrid preconditioners are
critical to obtain solutions of large scale simulations. This difference in performance shows
that a high performance scalable network is important to large scale simulations.

18

Weak Scaling Study: 1-level DD ILU Scaled to 28 Million DOF Weak Scaling Study: 3-level PG-SA ML Scaled to 28 Million DOF

Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
250 — 7 —T—TT — T —— T —T—TT]
| | —&— TLCC Open MPI1.2.7 OFED 1.2] 140 - —&—— TLCC Open MPI1.2.7 OFED 1.2 - — — — —
| | —=—— TLCC MVAPICH 1.2.7 OFED 1.2 i [| —=—— TLCC MVAPICH 1.0.1 OFED 1.2 4096c
| | —@—— Red Storm 4096¢c | | —@—— Red Storm |

n
o

n
o
o

— =+
| | TLCC 2.2 GHz Quad Socket/Quad Core

=
| | TLCC 2.2 GHz Quad Socket/Quad Core

I |Red Storm 2.4 GHz Dual Core L

| T

Red Storm 2.4 GHz Dual Core
T

o
s)

T
I [ILU(2) overlap=1 |
—

*-\ ML 3-level PG-SA W(1,1) agg125 \ }
N I

o

o
@
o

(o2}
o

o
o

IS
o

CPU Time per Newton Step (sec)
o
o

CPU Time per Newton Step (sec)

n
o

Unknowns Unknowns

(a) 1-level DD ILU (b) 3-level W(1,1) agg125

Figure 4. Weak scaling study up to 28 million unknowns

3.3 Fixed problem size scaling study (28 million unknowns)

A fixed problem size scaling study was performed on TLCC for both a one-level DD ILU
preconditioner and a three-level multigrid preconditioner, for Charon with Open MPI and
MVAPICH. A mesh with 28 million unknowns was used for all the cases as the number of
cores was increased from 128 to 4096. The results for the one-level and three-level precondi-
tioner are presented in Table 5 and 6 respectively, and compared with the same scaling study
performed on Red Storm. Once again, the TLCC results for Charon with MVAPICH are
presented in the tables while the TLCC results for Charon with Open MPI are not included
in the tables. All runs took seven Newton steps. The three-level Petrov-Galerkin multigrid
preconditioner uses a W(1,1) cycle with coarser levels generated using METIS/ParMETIS
and 125 nodes per aggregate.

The comparison between TLCC and Red Storm for the one-level and three-level precon-
ditioners are plotted in Figure 6(a) and 6(b) respectively. Once again the TLCC results for
Charon with Open MPI are also plotted in the figures. The considerably poorer scaling of
Charon with Open MPI compared to MVAPICH on TLCC is apparent from the figures.
Figure 7 presents the ratio of the TLCC time (Charon with MVAPICH) over the Red Storm
time. In Figure 7, the horizontal dashed green and black lines would denote the case where
TLCC and Red Storm were scaling in a similar manner for the one-level and three-level pre-
conditioners respectively. From the figure, the performance of the three-level preconditioner
on TLCC MVAPICH is the same as on Red Storm up to 512 cores and competitive up to
2048 cores. The situation deteriorates at 3072 cores, and at 4096 cores the difference is a
factor of 2.4. It is clear that beyond 2048 cores the multigrid preconditioner scales consider-
ably better on Red Storm than TLCC. These results again draw attention to the inadequate

19

proc | DOF/ 1-level DD ILU(2) overlap=1
core TLCC (MVAPICH) Red Storm
iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)
Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
512 | 545K | 1112 | 1.86 | 1127 | 6.26 | 1136 | 1112 | 1.94 739 | 17.3 761
1024 | 272K | 1145 | 1.01 648 | 3.02 652 | 1145 | 1.02 317 | 7.57 327
2048 | 13.6K | 1181 | 0.55 328 | 1.54 | 330 | 1181 | 0.56 184 | 3.86 | 189
4096 | 6800 | 1244 | 0.36 193 | 0.77 | 195 | 1244 | 0.32 | 97.6 | 1.57 | 100
Table 5. Fixed problem size scaling study with 28 mil-
lion unknowns comparing one-level preconditioner for TLCC
(MVAPICH) and Red Storm.
proc | DOF/ 3-level PG-SA W(1,1) aggl25
core TLCC (MVAPICH) Red Storm
iter/ | Time/Newton step (sec) | iter/ | Time/Newton step (sec)
Newt | prec | linear | Jac | Newt | Newt | prec | linear | Jac | Newt
128 | 218K 111 | 13.0 165 | 47.3 225 113 | 13.2 115 | 72.1 206
256 | 109K 117 | 7.03 92.1 | 14.5 113 114 | 7.16 59.4 | 35.3 104
512 | 54.5K 117 | 427 39.7|6.21 | 48.3 119 | 4.26 274 116.9 | 49.6
1024 | 27.2K 125 | 3.45 314 13.02| 35.6 125 | 2.89 16.8 | 7.71 | 27.3
2048 | 13.6K 129 | 397 278|153 | 300 130|246 | 149329 | 199
3072 | 9100 138 | 5.10 | 359 | 1.03| 374 | 140|262 | 153|241 | 189
4096 | 6800 153 | 6.14 | 50.2|0.79 | 51.4| 151|335 | 19.2|1.86| 21.9

Table 6. Fixed problem size scaling study with 28 million

unknowns comparing three-level preconditioner for TLCC
(MVAPICH) and Red Storm.

20

Weak Scaling Study to 28 Million DOF: TLCC/(Red Storm) Time Ratio
Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
3 T T T — T T T T T T

|| —®—— 1-level DD ILU
| —@—— 3-level PG-SA W(1,1) agg125 i

|| TLCC 2.2 GHz Quad Socket/Quad Core
| |Red Storm 2.4 GHz Dual Core

\
\
\
\
\
\
\
\
\
\
\
\
|
\
\
\
\
X

i
|
|
|
|
X

similar scaling

___________ T si_mil_ar-scaling

L | | i

PRI | | L

10° 10° 107 10°
Unknowns

TLCC/(Red Storm) Time per Newton Step

Figure 5. Weak scaling study up to 28 million unknowns:
ratio of times TLCC/RS

scaling of the multilevel solution algorithm, which performs well on the Red Storm machine,
on the TLCC platform. Additionally this substantial difference in the scaling behavior of the
one-level and multilevel methods would make the evaluation of scalable high performance
solution methods (multilevel techniques) difficult on TLCC if one is interested in inferring
behavior of these methods on capability type machines such as Red Storm.

21

Fixed Problem Size Scaling: 27.9 Million DOF 1-level ML Fixed Problem Size Scaling: 27.9 Million DOF 3-level ML
Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
1200 —T T ———— 250 — T ——
i 12 — A H 3]
I S1ze - ;tgg ﬂﬁpvcpd 11%1 i | 128¢ ——&—— TLCC Open MPI 1.2.7 OFED 1.2
— 3 Red St B e I —&— TLCC MVAPICH 1.0.1 OFED 1.2 |
21000~ ——————— —@— RedStorm . 0 —e— Red Storm
> 0 qee 2.2 GHz I L TLCC 2.2 GHz Quad SocketQuad Core | |
i Quad Socket/Quad Core I ‘ -
‘a' 3 Red Storm 2.4 GHz Dual Core [{ g i Red Storm 2.4 GHz Dual Core 1
o 800 7 i [3-level PG-SA W(1,1) agg125] |
(= c
5 § 150F——\—————— e —
H] s i 4096¢
(] (]
2 600 2 i 1
I £y —
3 S 100 —=ER———— ————]
Q © + J
g 400 £ - 3072¢c 1
= [i 1
) - 3 4096c |
[o SOF—————— -
O 200 o]
i ‘ 3072c g4096c |
ol HHIG e ol HHIS
10 10 10 10 10 10*
Cores Cores
(a) 1-level DD ILU (b) 3-level W(1,1) aggl25

Figure 6. Fixed problem size scaling study with 28 million
unknowns

Weak Scaling Study: Charon Steady Drift-Diffusion 2x1.5 um BJT 0.3V
TLCC 2.2 GHz Quad Socket/Quad Core; Red Storm 2.4 GHz Dual Core

3r T T \\\HH‘
| |—®— 1-levelDD ILU
| |—@— 3-level PG-SAW(1,1) agg125 1
25 ————— —— — — — — T

n

0

o
o

[\ \ []
+ \ \ [
0° 10° 107 10°
Unknowns

TLCC/(Red Storm) Time per Newton Step

Figure 7. Fixed problem size scaling study with 28 million
unknowns: ratio of times TLCC/RS

22

4 Multicore Results

This section considers the efficiency of the Charon code when utilizing the multiple cores
on the quad socket/quad core TLCC compute node. The test case is the steady-state drift-
diffusion solution of the 2 x 1.5pum NPN BJT with 0.3V bias that was used in the previous
section. Before considering how efficiently the Charon code can use the cores on a compute
node, we present a short discussion concerning accessing memory within a compute node
and placing MPI tasks on cores.

4.1 Memory and placement of MPI tasks on cores

Each compute node of TLCC has four sockets, where each socket is a quad core processor.
Each core has its own L1 and L2 cache, but the four cores on a socket share a 2MB L3
cache. In contrast to the traditional practice of having the memory controller separate
from the CPU, the AMD64 architecture? and the AMD K10 architecture?® place the memory
controller on the CPU. Because of this, compute nodes with multiple sockets have shared
memory, but nonuniform memory access (NUMA). For TLCC, the memory controller for
each socket accesses 8 GB RAM, so each compute node has a total of 32 GB RAM. If a
task on one socket needs to access memory handled by the memory controller of another
socket, there will be a considerable performance penalty as the data will have to travel
through the HyperTransport links connecting the sockets. By default, the operating system
distributes the MPI tasks on the sockets and cores as well as distributing data for the shared
memory. A user can use the numactl system command to specify a certain placement of MPI
tasks to sockets and cores as well as a specific memory placement policy. The TLCC FAQ
recommends using the /apps/contrib/numa wrapper-16ppn script provided by the TLCC
administrators to improve job performance (which invokes numactl under the hood). The
main improvement is due to locking MPI tasks to specific sockets and locking those MPI
tasks to using the corresponding on-chip memory controller.

For performance reasons, MPI tasks should be accessing memory that is local to a socket.
However, if the local memory for a socket fills up, rather than have the job crash, it may be
better to allow an MPI task to use memory that is local to another socket so that the job
will complete. To see the upper bound on how severe the performance penalty can be, one
can force MPI tasks to use memory that is not local to its socket.

Consider an example for the BJT with a mesh with 27.9 million unknowns and run on 128
cores with a three-level multigrid preconditioner (W(1,1) cycle and 125 nodes per aggregate).
Each core has about 218,000 unknowns. Table 7 compares the time per Newton step for five
choices of memory layout:

e “local”: four MPI tasks locked to each socket and corresponding on-chip memory

2also known as K8 and includes Athlon 64 and earlier Opterons
3includes newer Opterons such as Barcelona

23

numa_wrapper 3-level W(1,1)

Newton step

time(s) | time/Ref

local 225 Ref
nonlocal 1-hops 409 1.81
nonlocal 1,2-hops Case A 459 2.04
nonlocal 1,2-hops Case B 458 2.03
nonlocal 2-hops 436 1.93
none 256 1.14

Table 7. Effect on performance due to local vs. nonlocal
memory access on a node.

controller.

“nonlocal 1-hop”: four MPI tasks locked to each socket but force each MPI task to
perform one HyperTransport “hop” to access the memory controller on another socket.
Specifically, MPI tasks on socket 0,1,2,3 are forced to use the memory controller on
sockets 2,3,0,1 respectively.

“nonlocal 1,2-hop Case A”: four MPI tasks locked to each socket but force each MPI
task to perform one or two HyperTransport “hops” to access the memory controller on
another socket. Specifically, MPI tasks on socket 0,1,2,3 are forced to use the memory
controller on sockets 1,2,3,0 respectively.

“nonlocal 1,2-hop Case B”: four MPI tasks locked to each socket but force each MPI
task to perform one or two HyperTransport “hops” to access the memory controller on
another socket. Specifically, MPI tasks on socket 0,1,2,3 are forced to use the memory
controller on sockets 3,0,1,2 respectively.

“nonlocal 2-hop”: four MPI tasks locked to each socket but force each MPI task to
perform two HyperTransport “hops” to access the memory controller on another socket.
Specifically, MPI tasks on socket 0,1,2,3 are forced to use the memory controller on
sockets 3,2,1,0 respectively.

“none”: no numa_wrapper is used; OS decides which sockets and memory controllers
an MPI task will use and may allow MPI tasks on a socket to use nonlocal memory.

The third column in Table 7 is the ratio of the time with the reference time (local memory).
These results show that in the worst case scenario—when nonlocal memory is used—the
run time can be doubled for this particular test case. However, the data also indicates that
anytime nonlocal memory is used there will be a significant performance penalty. Of the
four nonlocal memory usage cases, the least penalty is the “l1-hop” case. As expected, the

24

core | DOF/ 1-level ILU(1) overlap=1

core linear solve Jacobian matrix Newton step
time(s) | su. | 7 | time(s) | s.u. n | time(s) | s.u. n
438K 78.0 Ref | Ref | 485 Ref | Ref 147 Ref | Ref
109K | 20.0 | 3.9 [98% | 123 | 3.9 | 99% | 36.5 | 4.0 | 101%
55K 10.7 7.3 192% | 6.15 79 | 99% 18.8 7.8 | 98%
12 | 36K 8.21 9.5 [79% | 4.05 12.0 | 100% | 13.8 |10.7 | 89%
16 | 27K 7.29 10.7 | 67% 3.04 16.0 | 100% 11.5 12.8 | 80%

oo| | =

Table 8. Strong scaling on single node: one-level ILU
(“speedup” is abbreviated as “s.u.”).

two “1,2-hop” cases are about the same. Intuitively one would have expected the “2-hop”
case to be around the same time as the two “1,2-hop” cases as synchronization causes all
tasks to wait for the slowest task, but contrary to expectation it is a little faster. A few
additional test cases with different sized meshes were used, and for those test cases, the ratio
of the time for the “nonlocal 1-hop” and “nonlocal 1,2-hops” and the reference time (local
memory controller case) were 1.4-2.2 and 1.5-2.5 respectively. It should be stated that the
performance penalty is of course problem specific. The final row in Table 7 is the performance
penalty when numa wrapper is not used, and is 14% for this case, and for additional tests
involving more than one compute node, this penalty was about 10-23%.

It is worth noting that the /apps/contrib/numa wrapper-16ppn locks the first four MPI
tasks to socket 1, the next four MPI tasks to socket 2, the next four MPI tasks to socket 3,
and the final four MPI tasks to the socket 0 (actually it locks specific MPI tasks to specific
cores). However, one could perform various permutations of this, for example lock MPI tasks
with local ranks 0,4,8,12 to socket 1, local ranks 1,5,9,13 to socket 2, local ranks 2,6,10,14
to socket 3, and local ranks 3,7,11,15 to socket 1. For the 28 million unknown steady-state
drift-diffusion BJT problem run on 1024 cores, the run time for the latter permutation
was 10% less for a three-level multigrid preconditioner with V(1,1)-cycle and about 4%
less for a three-level multigrid preconditioner with W(1,1)-cycle compared with the default
/apps/contrib/numa wrapper-16ppn. Naturally the optimal choice of assigning MPI tasks
to sockets and cores will be problem dependent as well.

4.2 Scaling for a single compute node

Table 8 presents a strong scaling study (fixed size problem) on a single node for the one-level
preconditioner. The mesh is 440 x 330 elements (438,000 unknowns), and is solved on a
different number of cores. The linear solve time reported includes the time to construct the
preconditioner, but not the construction of the Jacobian. The next three columns concerns
the time to construct the Jacobian matrix. Note that the time to construct the Jacobian

25

core | DOF/ | iter/ 3-level PG-SA aggl25 W(1,1)

core | Newt linear solve Jacobian matrix Newton step
time(s) | su. | n | time(s) | su. | n | time(s) | su. | 7
1| 438K 52 66.4 Ref | Ref | 488 Ref | Ref 136 Ref | Ref
4 1 109K 53 15.9 4.2 1104 | 12.0 4.1 | 102 | 328 4.1 | 104
8 | 55K 55 8.94 74 | 93 5.99 82 1102 | 17.3 79 | 99
12 | 36K 57 7.30 9.1 | 76 3.98 |123 (102 | 128 |10.6 | 89

16 | 27K 5h) 6.50 |10.2 | 64 299 163|102 | 106 |12.8 | 80

Table 9. Strong scaling on single node: multigrid precon-
ditioner; “speedup” is abbreviated as “s.u.”

matrix scales almost perfectly. The “Newton step” columns includes the time for everything
performed during a Newton step, i.e. linear solve time and Jacobian matrix construction
time. Convergence to solution typically takes on the order of seven Newton steps. 7 is
parallel efficiency. The particular Krylov solver for this study is TFQMR with one-level DD
ILU(1) overlap=1 preconditioner. In this case the linear solve tolerance was set sufficiently
tight so that each Newton step would take 100 Krylov iterations so that the significant effect
of increasing iteration count with the core count (an algorithmic scaling issue) could be
eliminated.

Table 9 presents the analogous strong scaling study but with a three-level multigrid
preconditioner. Although the number of iterations is changing as the number of cores is
increased, the variation of the Krylov iterations by 10% should not change the results much.
The mesh is 440 x 330 elements (438,000 unknowns). The preconditioner was a three-
level Petrov-Galerkin W(1,1) multigrid preconditioner. 125 nodes per aggregate are used
to generate the coarser levels, and an ILU(1) overlap=1 smoother is used on the fine and
medium mesh with KLU direct solver on the coarse level. The GMRES Krylov solver was
used.

As the results indicate when only two cores per socket are used (total of eight cores per
node), the scaling of the time per Newton step for both the one-level and multigrid precon-
ditioner is near optimal. However, the addition of a third MPI task causes a performance
drop.

Table 10 presents a weak scaling study where the problem is scaled up so that each core
has 110,000 unknowns. As with the previous table, linear solve time includes the time to
construct the preconditioner, but not the Jacobian. 7 is efficiency, i.e. ratio of time for that
run and the reference time (run with one core). The Krylov solver is TFQMR with one-level
DD ILU(1) overlap=1 preconditioner. The linear solve tolerance was set sufficiently tight so
that each Newton step would take 100 Krylov iterations.

From Tables 810, one can see that the efficiencies obtained from using all 16 cores on a

26

core | Total 1-level DD ILU(1) overlap=1

DOF | linear solve | Jacobian matrix | Newton step
time(s) | n | time(s) n time(s) | 7

1| 110K 19.0 | Ref | 12.3 Ref 36.5 Ref

4] 438K | 20.0 | 95 | 123 100 36.5 | 100

8 | 873K 22.2 86 12.3 101 38.5 95
12 | 1.31M 25.6 74 12.4 99 42.1 87
16 | 1.75M 30.7 62 12.2 101 46.9 78

Table 10. Weak scaling on single node: 110K DOF/core
one-level ILU

Config 27.3K DOF /core 109K DOF /core

linear solve | Jacobian | Newton step | linear solve | Jacobian | Newton step

time | n | time | n | time n time | n | time | n | time i

256n 1ppn | 9.93 | Ref | 3.26 | Ref | 14.6 | Ref | 44.5 | Ref | 15.8 | Ref | 66.9 | Ref

64n 4ppn | 10.5 | 94 | 3.13 | 104 | 15.0 97 46.4 | 96 | 15.4 | 103 | 68.1 98

32n 8ppn | 11.2 | 89 | 3.11 | 105 | 15.5 94 56.3 | 79 | 15.2 | 104 | 77.6 86

21.3n 12ppn | 13.1 | 76 | 3.06 | 107 | 174 84 75.0 | 59 | 14.7 | 107 | 95.9 70

16n 16ppn | 15.8 | 63 | 3.06 | 107 | 20.1 73 94.7 | 47 | 14.3 | 111 | 115 58

Table 11. Multicore network /node study starting with 256
compute nodes.

compute node show that it is advantageous to use all the cores with the MPI-only approach.
When utilizing all 16 cores both preconditioners achieve very reasonable performance for
these single node scaling studies considering the contention for memory access on each socket.

4.3 Effects of network and compute nodes on scaling

Any reasonable size calculation needed to obtain sufficient fidelity will not fit on a single
compute node, so one needs to consider how the network effects the performance of the
calculations. If one needs to run a job with 7" MPI tasks on a machine with compute nodes
with m cores, one can try get a rough idea of the penalty due to the contention for memory
by considering the extreme case where one runs a single MPI task on 7' compute nodes,
leaving the rest m — 1 cores idle, and m MPI tasks on T'/m compute nodes and comparing
the run times. This is a trade-off between network effects and memory contention effects.

Table 11 presents results for this study involving 256 MPI tasks. A total of 256 cores were

27

used for this test case, but with different numbers of MPI tasks per compute node (“ppn”
denotes “processes per node”), which determines the number of compute nodes needed. For
the “4dppn,” “8ppn” and “12ppn” cases, each socket has one, two and three MPI tasks respec-
tively. Two different size meshes were used to show the effect of contention of bandwidth to
memory among the cores. The 109,000 DOF /core case attempts to represent the worst case
scenario that tries to use the majority of the RAM and therefore would maximize contention
for memory. This is in contrast to the 27,300 DOF /core case which is more representative
of a typical Charon run. The 15% difference in efficiency for Newton step is due to this
contention for memory. Note that the time to construct the Jacobian decreases as the num-
ber of compute nodes decreases for both cases. This is likely due to the fact that fewer
network cards are involved in communication. The construction of the Jacobian involves
two steps: first a local matrix fill, then a communication step for the global assembly. The
preconditioner is a three-level Petrov-Galerkin multigrid preconditioner W(1,1) cycle with
coarser levels generated by METIS/ParMETIS with 125 nodes per aggregate. Smoothers
and solvers are ILU(1) overlap=1 smoother on fine and medium mesh and KLU direct solver
on coarse mesh.

From Table 11 one can see that the efficiencies obtained from using all 16 cores on a
compute node show that for the Charon device simulator it is definitely advantageous to use
all 16 of the cores.

We have heard from another team using similar quad socket/quad core compute nodes
that due to operating system “jitter” it is better to use only 15 rather than 16 MPI tasks per
node. We ran the same 27.9 million DOF problem discussed in this subsection using 1024
MPI tasks, first on 64 nodes with 16 MPI tasks per node then on 69 compute nodes with 15
MPT tasks per node (the final compute node had only 4 MPT tasks so that the total of MPI
tasks was 1024). The average time per Newton step for the 16ppn and 15ppn cases was 32.9
and 31.3 seconds respectively. Although the 15ppn case was 5% faster than the 16ppn case,
the former uses 8% more nodes than the latter, so for the same number of MPI tasks, it is
better to run with 16ppn than 15ppn.

28

5 Conclusions

This preliminary study concerned the performance of the Charon finite element semiconduc-
tor device simulation code on the TLCC machine for strong and weak scaling, and multicore
performance. The multigrid preconditioner, which is critical for large-scale simulations,
definitely performed better on the Red Storm machine than TLCC. The performance degra-
dation of TLCC for the largest-scale multilevel computations on 4096 cores, was apparently
due to the use of a commodity network interconnect in contrast to the Cray XT3/4. This
result indicates that the evaluation of solution methods and algorithms on TLCC, that are
intended to elucidate the scaling of these algorithms on capability machines such as Red
Storm, is problematic.

In the context of multicore performance this study also demonstrated that Charon could
run reasonably efficiently on all 16 cores per compute node. These results also confirmed that
in this case, an MPI-only programming paradigm appears to be sufficient for a machine with
quad socket /quad core compute nodes. More extensive studies of the performance of specific
kernel algorithms and routines will soon be undertaken to more carefully characterize the
performance of finite element type applications and Newton-Krylov type solution methods
on multicore architectures.

29

1]

[10]

[11]

[12]

[13]

[14]

References

P.N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations.
SIAM J. Sci. Stat. Comp., 11(3):450-481, 1990.

Sophia Corwell, Jeffrey Ogden, Marcus Epperson, Jesse Livesay, and rest of TLCC team.
https://computing.sandia.gov /platforms/tlcc.

T.A. Davis. Direct Methods for Sparse Linear Systems. STAM, 2006.

M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala. ML 5.0 smoothed
aggregation user’s guide. Technical Report SAND2006-2649, Sandia National Labora-
tories, 2006.

A. Greenbaum. [lterative methods for solving linear systems. SIAM, Philadelphia, PA,
USA, 1987.

B. Hendrickson and R. Leland. The Chaco user’s guide—version 1.0. Technical Report
SAND93-2339, Sandia National Laboratories, Albuquerque NM, 87185, 1993.

M. Heroux. AztecOO user guide. Technical Report SAND-3796, Sandia National Lab-
oratories, 2007.

M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
and A. Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia
National Laboratories, 2003.

M.A. Heroux. Design issues for numerical libraries on scalable multicore architectures.
Journal of Physics: Conference Series, 125:1-11, 2008.

T.J.R. Hughes and A. Brooks. A theoretical framework for Petrov-Galerkin methods
with discontinuous weighting functions: Application to the streamline-upwind proce-

dure. In R.H. Gallagher et al, editor, Finite Elements in Fluids, volume 4, pages 47-65.
J. Willey & Sons, 1982.

T.J.R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation for
computational fluid dynamics: II. Beyond SUPG. Comput. Meth. Appl. Mech. Engrg.,
54:341-355, 1986.

G. Karypis and V. Kumar. ParMETIS: Parallel graph partitioning and sparse matrix
ordering library. Technical Report 97-060, Department of Computer Science, University
of Minnesota, 1997.

Kevin M. Kramer and W. Nicholas G. Hitchon. Semiconductor Devices, A Simulation
Approach. Prentice Hall PTR, 1997.

P. T. Lin, M. Sala, J. N. Shadid, and R. S. Tuminaro. Performance of fully-coupled
algebraic multilevel domain decomposition preconditioners for incompressible flow and
transport. Int. J. Num. Meth. Eng., 67(9):208-225, 2006.

30

[15] T. Minyard. Ranger InfiniBand Birds-of-a-feather session. SC08 Conference, 2008.
[16] Y. Saad. [terative Methods for Sparse Linear Systems. STAM, 2003.

[17] M. Sala and M. Heroux. Robust algebraic preconditioners with IFPACK 3.0. Technical
Report SAND-0662, Sandia National Laboratories, 2005.

[18] M. Sala, J. N. Shadid, and R. S. Tuminaro. An improved convergence bound for
aggregation-based domain decomposition preconditioners. SIAM J. Matrix Analysis,
27(3):744-756, 2006.

[19] M. Sala and R.S. Tuminaro. A new Petrov-Galerkin smoothed aggregation precondi-
tioner for nonsymmetric linear systems. accept to SIAM J. Sci. Stat., 2008.

[20] J. N. Shadid, G. L. Hennigan, P.T. Lin, and R. J. Hoekstra. Performance of stabilized
finite element methods for solution of the drift-difusion equations of semiconductor
modeling. in preparation.

[21] J.N. Shadid. A fully-coupled Newton-Krylov solution method for parallel unstructured
finite element fluid flow, heat and mass transfer simulations. Int. J. CFD, 12:199-211,
1999.

[22] J.N. Shadid, A. G. Salinger, R. P. Pawlowski, P. T. Lin, G. L. Hennigan, R.S. Tuminaro,
and R. B. Lehoucq. Large-scale stabilized fe computational analysis of nonlinear steady
state transport / reaction systems. Accepted in Comp. Meth. in App. Mechanics and
Eng., 2004.

[23] J.N. Shadid, R.S. Tuminaro, K.D. Devine, G.L. Henningan, and P.T. Lin. Perfor-
mance of fully-coupled domain decomposition preconditioners for finite element trans-
port/reaction simulations. J. Comput. Phys., 205(1):24-47, 2005.

[24] F. Shakib. Finite element analysis of the compressible Euler and Navier-Stokes equa-
tions. PhD thesis, Division of Applied Mathematics, Stanford University, 1989.

[25] H. Simon, T. Zacharia, and R. Stevens. Report on modeling and simu-
lation at the exascale for energy and the environment. Technical Report
http://www.er.doe.gov/ascr/ProgramDocuments/ProgDocs.html, DOE Office of Sci-
ence, Advanced Scientific Computing Research, 2007.

[26] S. M. Sze. Physics of Semiconductor Devices. John Wiley & Sons, 2nd edition, 1981.

[27] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid. Aztec user’s guide-
version 2.1. Technical Report SAND99-8801J, Sandia National Laboratories, Albu-
querque NM, 87185, Nov. 1999.

31

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic)

32

vi.31

@ Sandia National Laboratories

